
The mean-field scaling function of the universality class of absorbing phase transitions with a

conserved field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 4853

(http://iopscience.iop.org/0305-4470/35/23/304)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 4853–4860 PII: S0305-4470(02)34591-8

The mean-field scaling function of the universality
class of absorbing phase transitions with a conserved
field
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Abstract
We consider two mean-field like models which belong to the universality class of
absorbing phase transitions with a conserved field. In both cases we analytically
derive the order parameter as a function of the control parameter and of an
external field conjugated to the order parameter. This allows us to calculate the
universal scaling function of the mean-field behaviour. The obtained universal
function is in perfect agreement with recently obtained numerical data of the
corresponding five- and six-dimensional models, showing that four is the upper
critical dimension of this particular universality class.

PACS numbers: 05.70.Ln, 05.50.+q, 05.65.+b

1. Introduction

The scaling behaviour of directed percolation is recognized as the paradigmatic example of
the critical behaviour of several non-equilibrium systems which exhibits a continuous phase
transition from an active state to an absorbing non-active state (see, for instance, [1, 2]). The
widespread occurrence of such systems in physics, biology, as well as catalytic chemical
reactions, is reflected by the well known universality hypothesis of Janssen and Grassberger
that models exhibiting continuous phase transition to a single absorbing state generally belong
to the universality class of directed percolation [3,4]. Introducing an additional symmetry the
critical behaviour differs from directed percolation. In particular, particle conservation leads
to a new universality class of absorbing phase transitions with a conserved field as pointed out
in [5]. In this work the authors introduce two models, the conserved lattice gas (CLG) model,
as well as a conserved threshold transfer process (CTTP). The latter is a conserved modification
of the threshold transfer process introduced in [6]. Both models display a continuous phase
transition from an active to an inactive phase. The density of active sites ρa is the order
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parameter of the phase transition controlled by the total density of particles ρ, i.e. ρa > 0 if
the density exceeds the critical value ρc and zero otherwise. As usual in second-order phase
transitions the order parameter vanishes algebraically at the transition point. The corresponding
order parameter exponent as well as the exponent of the order parameter fluctuations of the
CLG are determined in [7] for various dimensions.

The scaling behaviour of the CLG model in an external field conjugated to the order
parameter was considered recently [8]. The external field is realized by movements of inactive
particles which may be activated in this way. Thus the field creates active particles without
violating particle conservation. Taking into account this additional scaling field the order
parameter obeys the scaling ansatz

ρa(δρ, h) ∼ λr̃(δρλ−1/β, hλ−σ/β) (1)

with the critical exponents β and σ , the scaling function r̃ , the reduced control parameter
δρ = ρ/ρc − 1 and the external field h. Choosing δρλ−1/β = 1, for zero fields one gets
ρa ∼ r̃(1, 0)δρβ , whereas hλ−σ/β = 1 leads at the critical density to ρa ∼ r̃(0, 1)hβ/σ . Except
for the critical point (δρ = 0, h = 0), the scaling function r̃(x, y) is smooth and analytic but
it is not universal since it may depend, like the value of ρc, on the details of the considered
systems (here, for example, the lattice structure, the update scheme, etc).

A universal scaling function R̃ can be introduced if one allows non-universal metric factors
ci for the scaling arguments δρ and h (see, for instance, [9]), i.e.

ρa(δρ, h) ∼ λR̃(c1δρλ−1/β, c2hλ−σ/β), (2)

and the scaling function is normed by the conditions R̃(1, 0) = R̃(0, 1) = 1. Then the function
R̃(x, y) is universal, i.e. similar to the critical exponents, and R̃(x, y) is identical for all models
which belong to the same universality class. But the non-universal metric factors differ again
between the models and may depend on the lattice structure, the used update scheme, etc.

The non-universal metric factors can be easily determined by the scaling behaviour of the
order parameter at zero field and at the critical density, respectively. Choosing c1δρλ−1/β = 1
for zero fields (h = 0) one gets

ρa(δρ, 0) ∼ (c1δρ)β (3)

whereas c2hλ−σ/β = 1 leads at the critical density (δρ = 0) to

ρa(0, h) ∼ (c2h)β/σ . (4)

In this work we derive the universal scaling function R̃ of the mean-field solution of
the universality class of absorbing phase transitions with a conserved field. In particular, we
consider analytically the CLG and the CTTP with particle hopping to randomly chosen sites
on the whole lattice. This unrestricted particle hopping breaks long-range correlations and
the scaling behaviour is characterized by the mean-field exponents (see [10]). Neglecting
correlations it is possible to analytically derive the order parameter as a function of the control
parameter and of the external field. The obtained universal function is in perfect agreement
with recently obtained numerical data of the five- and six-dimensional CLG and CTTP in an
external field.

2. The conserved lattice gas

We consider the CLG model on a chain with L sites and periodic boundary conditions. At
the beginning one randomly distributes N = ρL particles on the system, where ρ denotes
the particle density. A particle is called active if at least one of its two neighbouring sites is
occupied. In the original CLG model active particles jump in the next update step to one of
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Table 1. The configuration of a CLG lattice before (C) and after (C′) a particle hopping. Only the
target lattice site where a particle hops onto and its left- and right-neighbouring sites are shown.
Empty sites are marked by ◦, inactive sites by ∗ and active sites by •. �n denotes the change of
the number of active sites due to the particle hopping and p is the corresponding probability of the
configuration C if one neglects spatial correlations.

C C′ �n p(C → C′)

◦ ◦ ◦ ◦ ∗ ◦ −1 ρa(1 − ρ)(1 − ρ)2

∗ ◦ ◦ • • ◦ +1 ρa(1 − ρ)2ρi(1 − ρ)

∗ ◦ ∗ • • • +2 ρa(1 − ρ)ρ2
i

• ◦ ◦ • • ◦ 0 ρa(1 − ρ)2ρa(1 − ρ)

• ◦ • • • • 0 ρa(1 − ρ)ρ2
a

• ◦ ∗ • • • +1 ρa(1 − ρ)2ρaρi

their empty nearest-neighbour sites, selected at random [5]. In the steady state the system is
characterized by the density of active sites ρa which depends on ρ. The density of inactive
sites is given by ρi = ρ − ρa and 1 − ρ is the density of empty sites.

We introduced in [10] a modification of the CLG model where active particles are moved
to a randomly chosen empty lattice site which suppresses long-range correlations. A given
lattice site is active with a probability ρa and with the probability 1 − ρ it may be moved to
an empty lattice site. Depending on the neighbourhood of this new lattice site the number
of active sites may change. For instance, if both new neighbours of the moved particle are
empty the number of active particles is reduced by one (�n = −1). Without correlations
the corresponding probability for this process is ρa(1 − ρ)3. In the case that one of the
new neighbours of the moved particle is occupied by an inactive particle (ρi) and the second
neighbour is empty (1 − ρ), the number of active sites is increased by one (�n = 1). The
corresponding probability is given by p = 2ρaρi(1 − ρ)2. All other possible configurations
and the corresponding probabilities are listed in table 1.

The probabilities that the number of active particles are changed by �n are given by

p�n=−1 = (1 − ρ)ρa(1 − ρ)2,

p�n=0 = (1 − ρ)ρa[2ρa(1 − ρ) + ρ2
a ],

p�n=1 = (1 − ρ)ρa[2ρi(1 − ρ) + 2ρaρi],
p�n=2 = (1 − ρ)ρaρ

2
i .

(5)

The expectation value of �n is

E[�n] =
2∑

�n=−1

�np�n = (1 − ρ)ρa[−1 − 2ρa + 4ρ − ρ2]. (6)

As pointed out in [10], the average number of active sites is constant in the stationary state, i.e.
the expectation value of �n should be zero in the steady state. Using the constraint E[�n] = 0
one gets

ρ = 1 ∨ ρa = 0 ∨ −1 − 2ρa + 4ρ − ρ2 = 0. (7)

The first equation corresponds to a system were all sites are occupied (ρa = 1) and no dynamics
can take place, whereas the absorbing state is reflected by the second equation. The non-trivial
third equation corresponds, for ρa > 0, to the active phase and one gets for the order parameter
in leading order

ρa = 4ρ − ρ2 − 1

2
= (2

√
3 − 3)δρ + O(δρ2) (8)
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Figure 1. The order parameter of the CLG model as a function of the particle density ρ and the
applied external field h (see equation (11)). The thick curve corresponds to h = 0 whereas the thin
curves correspond to h = 0.1, 0.05, 0.01 (from top to bottom).

with the critical density ρc = 2 −√
3 [10]. Thus we have obtained the critical exponent β = 1

as well as the non-universal metric factor c1 = 2
√

3 − 3.
In the case that an external field is applied non-active sites may be activated (see [8]).

The probability that a site is occupied and has two empty neighbours is ρ(1 − ρ)2. These
particles are activated with probability h, where h denotes the strength of the applied field.
In this process the number of active sites is increased (�n = 1) and the probability p�n=1 is
modified to

p�n=1 = (1 − ρ)ρa[2(1 − ρ)ρi + 2ρiρa] + (1 − ρ)2ρh. (9)

Using again the steady state condition E[�n] = 0 one gets the equations

ρ = 1 ∨ ρa[−1 − 2ρa + 4ρ − ρ2] + (1 − ρ)ρh = 0. (10)

The first equation again corresponds to the trivial case of a totally occupied lattice whereas the
second equation yields the solutions

ρa = 1
4

(
−1 + 4ρ − ρ2 ±

√
8h(1 − ρ)ρ + (−1 + 4ρ − ρ2)2

)
. (11)

The solution with the + sign describes the order parameter ρa(ρ, h) as a function of the density
and of the external field whereas the − sign solution yields negative densities for the order
parameter for all values of ρ and h. A sketch of the order parameter for various fields is
presented in figure 1.

At the critical density ρc = 2 − √
3 the order parameter is given by

ρa(ρc, h) =
√

3
√

3 − 5

2

√
h (12)

i.e. the field scaling exponent is σ = 2 and the non-universal metric factor is c2 = (3
√

3−5)/2.
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In the following we derive the universal scaling function R(x, y) of the mean-field solution.
Therefore, we write the order parameter (equation (11)) as a function of the reduced control
parameter δρ and consider the function ρa(δρ, h)/

√
h. Since we are interested in the scaling

behaviour in the vicinity of the critical point we perform the limits ρa → 0, δρ → 0 and
h → 0, with the constraint that ρa/

√
h and δρ/

√
h are finite. Thus all terms which scale as

δρ2/
√

h or δρ
√

h vanish in leading order and we get

ρa(δρ, h)√
h

= 2
√

3 − 3

2

δρ√
h

+

√
3
√

3 − 5

2
+

(
2
√

3 − 3

2

δρ√
h

)2

. (13)

Introducing the non-universal metric factors c1 = 2
√

3 − 3 and c2 = (3
√

3 − 5)/2 one gets
the universal function

R̃(c1δρ, c2h) = c1δρ

2
+

√
c2h +

(
c1δρ

2

)2

. (14)

Equations (8), (12) are recovered from this result by setting h = 0 and δρ = 0, respectively.
Furthermore, we get R̃(1, 0) = R̃(0, 1) = 1 as required above.

As usual in scaling analysis (see, for instance, [8]) the order parameter as well as the control
parameter are rescaled by the field in order to obtain a data collapse (setting c2hλ−σ/β = 1 in
equation (2)). In this case one gets the universal function

ρa(δρ, h)√
c2h

∼ R̃(x, 1) = x

2
+

√
1 +

(
x

2

)2

(15)

where the scaling argument is given by x = c1δρ/
√

c2h.
For the sake of simplicity we derived the scaling function of the one-dimensional CLG

model only. A straightforward extension to higher-dimensional systems for h = 0 has already
been presented in [10]. The increased number of nearest neighbours in higher dimensions
affects the non-universal quantities ρc, c1 and c2 only, but not the critical exponents and the
universal scaling function.

3. The conserved threshold transfer process

A similar analysis can be performed for the CTTP with random neighbour hopping. In the
CTTP lattice sites may be empty, occupied or doubly occupied. Doubly occupied lattice
sites are considered as active and one tries to transfer both particles of each active site to
randomly chosen lattice sites. Recently performed numerical investigations in dimensions
d = 2, 3, 4, 5, 6 confirm the conjecture of [5] that the CLG and the CTTP belong to the same
universality class [11]. Analogous to the above-presented analysis we derive the mean-field
critical behaviour of the order parameter of the CTTP with random neighbour hopping.

In the following we denote the densities of sites with ρa (doubly occupied and active),
ρi (singly occupied and inactive) and ρe (empty). Normalization requires ρe + ρi + ρa = 1
and the particle conservation is reflected by the equation ρi + 2ρa = ρ, where the control
parameter ρ again denotes the density of particles on a D-dimensional lattice, i.e. ρ = N/LD .
The probability that a given lattice site s is active is therefore ρa. In this case the two active
particles are tried to transfer to two randomly chosen lattice sites t1 and t2. In the case that both
sites are empty the two particles are moved to the empty sites and the number of active sites
is decreased by one (�n = −1). The probability for this process is ρaρ

2
e . All other possible
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Table 2. The configuration of a CTTP lattice before (s, t1, t2) and after (s′, t ′1, t
′
2) a particle hopping.

Only the source lattice site (s) and its two targets sites (t1 and t2) where the two particles may
be moved are shown. �n denotes the change of the number of active sites due to the particle
hopping and p is the corresponding probability of the configuration (s, t1, t2) if one neglects spatial
correlations.

s t1 t2 s′ t ′1 t ′2 �n p(s, t1, t2)

2 0 0 0 1 1 −1 ρaρ
2
e

2 0 1 0 1 2 0 ρa2ρeρi

2 0 2 1 1 2 −1 ρa2ρeρa

2 1 1 0 2 2 + 1 ρaρ
2
i

2 1 2 1 2 2 0 ρa2ρiρa

2 2 2 2 2 2 0 ρaρ
2
a

configurations and the corresponding probabilities are listed in table 2. The probabilities that
the number of active particles are changed by �n are thus given by

p�n=−1 = ρa[ρ2
e + 2ρeρa]

p�n=0 = ρa[2ρeρi + 2ρiρa + ρ2
a ]

p�n=1 = ρaρ
2
i .

(16)

The steady state condition E[�n] = 0 leads to the equations

ρa = 0 ∨ −1 + 2ρ − 4ρa + ρ2
a = 0. (17)

Again the first equation corresponds to the absorbing state and the second equation yields the
order parameter as a function of the particle density

ρa = 2 ±
√

5 − 2ρ. (18)

Here, the + solution can be neglected (ρa > 1) and the − solution describes the order parameter
behaviour above the critical density ρc = 1/2. Close to this critical point the order parameter
scales in leading order as

ρa = 1
4δρ + O(δρ2), (19)

i.e. the non-universal metric factor of the CTTP is c1 = 1/4 and the critical exponent is in
agreement with the CLG model β = 1.

Similar to the CLG model we now apply an external field which activates singly occupied
sites. The probability that the external field h acts to a given site is ρih and one tries to transfer
this particle to a randomly chosen lattice site. In the case that the activated particle is moved
to an empty lattice site the number of active site is unchanged by this field-induced process
(�n = 0). The number of active sites is increased only if the particle is moved to a singly
occupied lattice site (�n = +1). The probability for this process is ρ2

i h. In order to incorporate
the external field into the dynamics one has to modify p�n=1 accordingly, and the steady state
condition yields

ρa(−1 + 2ρ − 4ρa + ρ2
a ) + h(ρ − 2ρa)

2 = 0. (20)

At the critical density ρc = 1/2 the order parameter scales with the external field according to

ρa = 1
4h1/2 + O(h), (21)

i.e. the critical exponent is again σ = 2, and the non-universal metric factor of the CTTP is
given by c2 = 1/16.
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Figure 2. The mean-field universal function R̃(x, 1) (see equation (15)) of the universality of
absorbing phase transitions with a conserved field. The numerical data of the five- and six-
dimensional models are obtained from [8, 11]. Additionally, we plot the data of a (mean-field
like) CLG model with random neighbour hopping on a square lattice (z = 4 next neighbours)
which was introduced in [7]. At least four different field values are plotted for each model.

In order to obtain the universal scaling function R̃, we set ρ = ρc + ρcδρ and transform
equation (20) into

ρa√
h

(
δρ√
h

− 4
ρa√
h

+
ρ2

a√
h

)
+

(
1

2
+

1

2
δρ − 2ρ2

a

)2

= 0. (22)

Focusing on the critical scaling behaviour (h → 0, δρ → 0, ρa → 0 where again ρa/
√

h as
well as δρ/

√
h is kept constant) we can neglect all irrelevant terms and get in leading order

ρa√
h

(
δρ√
h

− 4
ρa√
h

)
+

1

4
= 0. (23)

This equation can be easily solved and one gets

ρa(δρ, h) = δρ

8
±

√
h

16
+

(
δρ

8

)2

(24)

where the − sign can be neglected since it yields negative values of the order parameter.
Using the non-universal metric factors c1 = 1/4 and c2 = 1/16 once again we eventually
get equation (14), i.e. both models the CLG as well as the CTTP are characterized by
the same universal function R̃(x, y) in the mean-field solution. Furthermore, the obtained
universal function R̃ agrees with that of the mean-field solution of directed percolation (see,
for instance, [12]), i.e. although the CLG and CTTP differ from the directed percolation scaling
behaviour in low dimensions they coincide on the mean-field level.
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4. Numerical simulations

In the following we compare our results with those obtained from numerical simulations.
The upper critical dimension of the universality class of absorbing phase transitions with a
conserved field is Dc = 4 [7]. Thus we compare our results with the scaling behaviour of the
CLG in D = 5 [8], the CTTP in D = 5 and 6 [11], as well as with the scaling behaviour of a
two-dimensional CLG on a square lattice where active particles are moved to randomly chosen
lattice sites [10]. In all models the order parameter is determined as a function of the control
parameter for various fields and the data are rescaled according to equation (15). Varying the
non-universal metric factors we observe a data-collapse with the universal function R̃(x, 1).
The corresponding curves are presented in figure 2. As one can see, all numerically obtained
curves fit well with the derived universal function. Furthermore, the perfect data collapse of
the curves for different dimensions, as well as for a mean-field model clearly confirms that
four is the upper critical dimension.

Notice that the mean-field behaviour of the CTTP order parameter was recently considered
in [13]. Using a cluster approximation method the authors obtained equation (18) which
describes the zero-field behaviour of the order parameter.
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[7] Lübeck S 2001 Phys. Rev. E 64 016123
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[12] Janssen H K, Kutbay Ü and Oerding K 1999 J. Phys. A: Math. Gen. 32 1809
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